首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   115篇
  国内免费   31篇
化学   402篇
晶体学   2篇
力学   26篇
综合类   41篇
数学   525篇
物理学   85篇
  2024年   1篇
  2023年   10篇
  2022年   20篇
  2021年   28篇
  2020年   34篇
  2019年   33篇
  2018年   23篇
  2017年   36篇
  2016年   47篇
  2015年   26篇
  2014年   59篇
  2013年   89篇
  2012年   49篇
  2011年   55篇
  2010年   54篇
  2009年   64篇
  2008年   36篇
  2007年   49篇
  2006年   43篇
  2005年   40篇
  2004年   35篇
  2003年   29篇
  2002年   23篇
  2001年   29篇
  2000年   14篇
  1999年   22篇
  1998年   15篇
  1997年   12篇
  1996年   19篇
  1995年   1篇
  1994年   8篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1081条查询结果,搜索用时 15 毫秒
31.
Lignin is an important source of synthetic materials because of its abundance in nature, low cost, stable supply, and no competition to the human food supply. Lignin, a cross‐linked phenolic polymer, contains a large number of aromatic groups that can be used as a substitute for petroleum‐based aromatic fine chemicals. However, modification of lignin is necessary for its application in advanced materials due to its chemically inert nature and structural complexity. Polymeric modification of lignin via graft copolymerization represents an important avenue for modification because this method forms stable covalent bond linkages between lignin and synthetic functional polymers. In this review, we discuss recent synthetic strategies toward polymeric modification of lignin using graft copolymerization and the special properties and applications of the produced lignin copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3515–3528  相似文献   
32.
《Optimization》2012,61(5-6):405-423
The topological degree theory is applied to study the problem of existence of solutions to the semi-definite complementarity problem (SDCP). A notion of an exceptional family of matrices is introduced, and assertions of a non-strict alternative type are obtained. Namely, for a continuous mapping, there exists at least one of the following two items: either a solution to the SDCP, or an exceptional family of matrices. Hence, if there is no exceptional family, then at least one solution exists  相似文献   
33.
myo‐Inositol, a naturally occurring cyclic hexaol, was converted to 2,4,6‐tri‐O‐allyl‐myo‐inositol and 1,2,3,4,5,6‐hexa‐O‐allyl‐myo‐inositol. Polyaddition of the former product, a tri(allyl ether) bearing three hydroxyl groups, with dithiols yielded the corresponding networked polymers. Their glass transition temperatures (Tgs) were higher than those of networked polymers formed by the polyaddition of 1,3,5‐tri‐O‐methyl‐2,4,6‐tri‐O‐allyl‐myo‐inositol. This implied the reinforcement of the networks by hydrogen bonding between the hydroxyl groups. Polyaddition of the latter product, a hexa(allyl ether), with dithiols yielded the corresponding networked polymers with much higher Tgs than those of all of the aforementioned networked polymers. This implied that efficient use of the hexafunctional monomer leads to the formation of more densely crosslinked polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1524–1529  相似文献   
34.
Reactive blends prepared from methoxysilane terminated silicone polymers and silylated soybean oil are described and characterized. Although simple mixing of soy and silicones results in gross phase separation, homogeneous polymeric products are obtained by introducing reactive sites. These products can be used as protective coatings, additives to adhesives and new sealants. Exposure of the mixtures to moisture leads to hydrolysis of the methoxysilanes and subsequent condensation of the resulting silanols that yields stable siloxane linkages between the two immiscible phases. FTIR, TGA, and swell‐gel analyses indicate effective formation of these siloxane crosslinks. Reactive blends containing less than 20% silylated oil appeared completely transparent but increasing the soy content decreased the optical transparency. SEM micrographs reveal the silicone polymer as the continuous phase with individual spherical silylated soy oil particles distributed in it. The properties of these reactive blends vary from high elongation elastomers to high modulus resins depending on the composition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3086–3093  相似文献   
35.
In this study, we investigated the CO2‐capture/release behavior of the polystyrene‐bearing cyclic amidine pendant groups, which was synthesized via free radical polymerization of HCl salt of the corresponding styrene monomer followed by neutralization. For comparison, we also prepared the polystyrene bearing N‐formyl‐1,3‐propanediamine pendant groups through the hydrolysis of the cyclic amidine group by treatment with an alkaline solution. First, we examined the CO2‐capture/release behaviors of the amidine and amine monomers in aqueous solution in terms of conductivity. The conductivity of a wet DMSO solution of the amidine monomer increased upon CO2 bubbling at 25 °C and reached a stationary value of about 11 mS/m, which indicated the formation of the bicarbonate salt. Conversely, the conductivity decreased to its original value upon N2 bubbling at 50 °C, reflecting the complete release of the trapped CO2 molecules. Both solutions showed the changes in the conductivity with quick responses, and no appreciable difference was observed between them. We then investigated the CO2‐capture/release behaviors of the amidine and amine polymers, by taking advantage of the binary system with polyethylene glycol, and found that the binary system with the amidine polymer captured and released CO2 more efficiently than that with the amine polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2025–2031  相似文献   
36.
37.
Starting from commonly available sugar derivatives, a single step protocol to access a small family of isohexide‐dioxalates ( 2a–c ) has been established. The synthetic competence of 2a–c has been demonstrated by subjecting them to condensation polymerization. Quite surprisingly, the proton NMR of poly(isomannide‐co‐hexane)oxalate revealed a 1:2 ratio between isomannide‐dioxalate ( 2a ) and 1,6‐hexanediol ( 3a ) in the polymer backbone. This intriguing reactivity was found to be an outcome of a cross metathesis reaction between 2a and 3a . The cross metathesis products 3a ”[2‐(2‐methoxyacetoxy)ethyl 2‐(2‐hydroxyethoxy)‐2‐(λ3‐oxydanylidene)acetate] and 2a ‘(3R,6R)‐6‐hydroxyhexahydrofuro[3,2‐b]‐furan‐3‐yl methyl oxalate were isolated in a control experiment. Based on direct and indirect evidence, and control experiments, an alternative polymerization mechanism is proposed. Polymerization conditions were optimized to obtain polyoxalates P1(2a‐3a)‐P9(2c‐3c) with molecular weights in the range of 14,000–68,000 g/mol, and narrow polydispersities. The identity of the polyoxalates was unambiguously established using 1‐2D NMR spectroscopy, MALDI‐ToF‐MS, and GPC measurements. The practical implication of these polymers is demonstrated by preparing transparent, mechanically robust films. The environmental footprint of the selected polyoxalates was investigated by subjecting them to solution and solid‐state degradation. The polyoxalates were found to be amenable to degradation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1584–1592  相似文献   
38.
《Mendeleev Communications》2021,31(5):593-604
In this focus overview, the main types and directions of engineering, methods and techniques of intensification of chemical process systems (CPS) and process optimization of energy- and resource-efficient processes for the representative production of titanium compounds, mining waste processing systems, electrochemical coating technologies, combined technologies for the treatment of industrial effluents and energy-and resource-efficient technologies for cleaning soils from petroleum and chemical pollution products are reviewed. The following issues have been discussed: methods of complex assessment of production energy efficiency and software and information support for automated synthesis of optimal energy-efficient regenerative heat exchange systems using pinch analysis; methods and algorithms for fractal-statistical characteristics analysis of nonstationary gas flows in complex gas pipelines; methods of ecological and economic optimization of production, infrastructure supply chains; methods for assessing and preventing the dangerous environmental impact assessment of chemical pollution; organization and logistics management of business processes engineering for improving the energy efficiency of plants; engineering of problem oriented computer systems, heuristic-computational models and algorithms for intelligent integrated logistics support of the equipment life cycle; engineering developments in the field of digital transformation of energy-efficient CPS and technological production systems; application of methods for optimizing reliability factors optimization, digitalized risk and safety management in the engineering of energy- and resource efficient CPS.  相似文献   
39.
Herein the first reported preparation of diblock copolymers of the polyethylene‐like polyester poly(ω‐pentadecalactone) (PPDL) via a combination of enzymatic ring‐opening polymerization (eROP) and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization techniques is described. PPDL was synthesized via eROP using Novozyme 435 as a catalyst and a bifunctional initiator/chain transfer agent (CTA) appropriate for the eROP of ω‐pentadecalactone (PDL) and RAFT polymerization of acrylic and styrenic monomers. Chain growth of the PPDL macro‐CTA was performed to prepare acrylic and styrenic diblock copolymers of PPDL, and demonstrates a facile, metal‐free, and “greener” alternative to preparing acrylic diblock copolymers of polyethylene (PE). Diblock copolymer architecture was substantiated via analysis of 1H NMR spectroscopic, UV‐GPC chromatographic, DSC onset crystallization (Tc), and MALDI‐ToF mass spectrometric data. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3326–3335  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号